9^x=1/3(27^x)

Simple and best practice solution for 9^x=1/3(27^x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9^x=1/3(27^x) equation:



9^x=1/3(27^x)
We move all terms to the left:
9^x-(1/3(27^x))=0
Domain of the equation: 327^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
9^x-1/327^x=0
We multiply all the terms by the denominator
9^x*327^x-1=0
Wy multiply elements
2943x^2-1=0
a = 2943; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2943·(-1)
Δ = 11772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11772}=\sqrt{36*327}=\sqrt{36}*\sqrt{327}=6\sqrt{327}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{327}}{2*2943}=\frac{0-6\sqrt{327}}{5886} =-\frac{6\sqrt{327}}{5886} =-\frac{\sqrt{327}}{981} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{327}}{2*2943}=\frac{0+6\sqrt{327}}{5886} =\frac{6\sqrt{327}}{5886} =\frac{\sqrt{327}}{981} $

See similar equations:

| x(x-3)=20 | | 9x=1/3(27^x) | | 7-2x=45 | | 63x=108 | | 2(8+p)=15 | | (2a-7/4)+7=a/3 | | 2x+20=28+5x | | 54/k=6 | | 0.75x+0.5x=100 | | 33x-3x=12 | | 5-x-20=5x-10-7x. | | 8x+2=3x-23 | | 0.7c-10=5 | | 5-2n=-5 | | xส่วน4-1ส่วน3=3 | | 3(y-2)-2(3y-2)=10แล้วค่าของ2y+1เท่าใด | | 3m-2+16=2+3m-1 | | 4d=–324d=–32 | | 5^x2-12=1/125 | | 9=7x+30 | | 7^2x=49x-1 | | r+2/6=3/11 | | 13+2x=3x-14-2x | | 5+8x=2x-3+5x | | 5x-2x+6x=9x | | 3m+6=m+6 | | 6f-8=4 | | x/x=π | | 21*4=12*x | | 16/800=x | | x5/12÷1/x=-35/18 | | 240/400=x |

Equations solver categories